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Statistiek

Tentamen

RULES FOR THE EXAM:

• The use of a normal, non-graphical calculator is permitted.

• This is a CLOSED-BOOK exam.

• At the end of the exam you can find a normal table and a chi-squared
table.

• Your exam mark : 10 + your score.

1. Point estimation 40 Marks . Let X1, . . . , Xn be a random sample
of independent, identically distributed Exponential(θ) random vari-
ables, with density

fθ(x) =

{
1
θe
−x/θ x ≥ 0
0 elsewhere

(a) Find a sufficient statistic θ̂(X1, . . . , Xn) for θ. [5 Marks]

ANSWER: Factorization theorem:

f(X) =
n∏
i=1

1

θ
e−Xi/θ

=
1

θn
e−

∑n
i=1Xi/θ

So, therefore θ̂(X) =
∑n

i=1Xi is a sufficient statistic.

(b) Determine the Cramer-Rao lower bound for an unbiased estima-
tor of θ. [10 Marks]
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ANSWER:

lX1
(θ) = − log θ −X1/θ

l′X1
(θ) = −1

θ
+X1/θ

2

l′′X1
(θ) =

1

θ2
− 2X1/θ

3

Then

El′′X1
=

1

θ2
− 2EX1/θ

3 =
1

θ2
− 2θ/θ3 =

−1

θ2
.

So,

CRLB(θ) =
−1

n× (−1/θ2)
=
θ2

n
.

(c) Determine the maximum likelihood estimator (MLE) of θ. [5
Marks]

ANSWER: Set lX(θ) = 0, i.e., solve

−n
θ

+
n∑
i=1

Xi/θ
2 = 0,

i.e.,
θ̂ = X̄.

We need to check that this is a maximum, so substitute into sec-
ond derivative:

l′′X(θ̂) =
n

X̄2
− 2

n∑
i=1

Xi/X̄
3 = − n

X̄2
< 0,

So it is a maximum.

(d) Let θ̂n be the MLE of θ,

i. Determine whether θ̂n is unbiased. [5 Marks]
ANSWER:

Eθ̂n = EX̄ = θ,

so the estimator is unbiased.
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ii. Prove that θ̂ is efficient. [5 Marks]
ANSWER:

V ( ˆthetan) =
θ2

n
,

which achieves the CRLB and therefore it is efficient.

(e) Assume that x̄ = 4 and n = 16, then determine an approximate
95% confidence interval for θ, using

i. a Wald approach – assuming asymptotic normality. [5 Marks]
ANSWER: We want to find

IW (X) = {θ0 | given W (X) do not reject H0 : θ = theta0},

The Wald statistic is given by

W (X) = θ̂n = X̄.

We know that asymptotically

√
n
X̄ − θ
θ

D→ N(0, 1).

So, we do not reject θ0, if

√
n
X̄ − θ0
θ0

∈ (−1.96, 1.96),

i.e.,

I(X) =

{
θ0 |

4

1 + 1.96/4
< θ0 <

4

1− 1.96/4

}
= (2.7, 7.8).

ii. a Likelihood Ratio approach – assuming asymptotic chi-squared
[Hint: graphical approximations of the interval are allowed,
but show the graph]. [5 Marks]
ANSWER: We want to find

ILR(X) = {θ0 | given LR(X) do not reject H0 : θ = theta0},

The Likelihood Ratio statistic is given by

LR(X) = LX(θ0)/LX(θ̂n).
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We use the fact that approximately under H0

−2 logLR(X) ∼ χ2
1,

whereby

−2 logLR(X) = −2× {(− log θ0 −
n∑
i=1

Xi/θ0)− (− log X̄ −
n∑
i=1

Xi/X̄)}

= −2{log
X̄

θ0
− n× (

X̄

θ0
− 1)}

The figure below shows the -2 times the log likelihood ratio
together with the χ2

1;0.95 = 3.841, which results into an ap-
proximate

ILR(X) = (2.5, 6.8).
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2. Cramer-Rao: best unbiased estimators 25 Marks .
Let X = (X1, . . . , Xn) be the observed data, such that

X1, . . . , Xn
i.i.d.∼ fθ.

Let θ̂ = θ̂(X) be an unbiased estimator of θ. Let Y = d
dθ log fθ,joint(X).

(a) Show that EY = 0. [5 Marks]

(b) Show that Cov(θ̂, Y ) = 1. [10 Marks]

(c) Show that V (θ̂) ≥ 1/E(Y 2). [5 Marks]
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(d) Use the above to show that

V (θ̂) ≥ 1

nE( d
dθ log fθ(X1))2

.

[5 Marks]

3. Optimal testing 25 Marks . An Atomic Energy Agency is worried
that a particular nuclear plant has leaked radio-active material. They
do 5 independent Geiger counter measurements in the direct neigh-
bourhood of the reactor. They find the following measurements (per
unit time):

observation 1 2 3 4 5
count 1 2 6 2 7

The natural background radiation has an average of λ = 2 (per unit
time). The agency would only be worried if the radiation rate would
be in the order of λ = 5. They therefore decide to test,

H0 : λ = 2

H1 : λ = 5

On the basis of these 5 measurements, they want to device the optimal
test to see if there is any reason for alarm, i.e. whether the rate of ra-
dioactivity is 5. They make the following assumptions. Let X1, ..., X5

be independently Poisson distributed with parameter λ, i.e.

pXi
(x) = e−λ

λx

x!
, x = 0, 1, 2, . . .

We use significance level α = 0.05.

(a) [10 Marks]Device the most powerful test for deciding between
the two hypotheses on the basis of these five measurements. De-
termine the Critical Region. [ Hint: sum of independent Poissons
is Poisson].
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(b) [5 Marks] What is the power of this test?

(c) Clearly, in practice, it is difficult to set up the hypothesis test as
two simple hypotheses. In fact, we would like to test,

H0 : λ ≤ 2

H1 : λ > 2

i. [5 Marks] Determine a sufficient statistic T w.r.t. λ ofX1, ..., X5

be independently Poisson distributed with parameter λ and
show that it has a monotone likelihood ratio.
ANSWER: From the factorization theorem, it is clear that

fX(x) =
5∏
i=1

e−λ
λxi

xi!
= e−5λλ

∑5
i=1 xi/

5∏
i=1

xi!

and therefore

T =
5∑
i=1

Xi ∼ Poisson(5λ) is a sufficient statistic.

The likelihood ratio for λ2 > λ1 as a function of t =
∑5

i=1 xi
is given as

LR(t) = e5(λ1−λ2)
(
λ2
λ1

)t
.

LR is monotone increasing in t as λ2/λ1 > 1.

ii. [5 Marks] Derive a uniform most powerful test of level α =
0.05.
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ANSWER: In (a) we have shown that the sufficient statistic
T =

∑5
i=1Xi has a monotone likelihood ratio. The conditions

of the Karlin-Rubin theorem are thereby fullfilled. From the
Karlin-Rubin theorem, it follows that if we reject H0 if and
only if T > t0, where

0.0487 = P5λ=10(T > t0)

the test is UMP of level α = 0.0487. From this it is clear that
t0 = 15.
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Below statistical tables which may be used in the calculations.

ν \ α 0.995 0.99 0.975 0.95 0.05 0.025 0.01 0.005
1 0.000 0.000 0.001 0.004 3.841 5.024 6.635 7.879
2 0.010 0.020 0.051 0.103 5.991 7.378 9.210 10.597
3 0.072 0.115 0.216 0.352 7.815 9.348 11.345 12.838
4 0.207 0.297 0.484 0.711 9.488 11.143 13.277 14.860
5 0.412 0.554 0.831 1.145 11.070 12.833 15.086 16.750
10 2.156 2.558 3.247 3.940 18.307 20.483 23.209 25.188

Table 1: Values of χ2
α,ν : the entries in the table correspond to values of x, such that

P (χ2
ν > x) = α, where χ2

ν correspond to a chi-squared distributed variable with ν degrees
of freedom.

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
1.0 0.341 0.344 0.346 0.348 0.351 0.353 0.355 0.358 0.360 0.362
1.1 0.364 0.367 0.369 0.371 0.373 0.375 0.377 0.379 0.381 0.383
1.2 0.385 0.387 0.389 0.391 0.393 0.394 0.396 0.398 0.400 0.401
1.3 0.403 0.405 0.407 0.408 0.410 0.411 0.413 0.415 0.416 0.418
1.4 0.419 0.421 0.422 0.424 0.425 0.426 0.428 0.429 0.431 0.432
1.5 0.433 0.434 0.436 0.437 0.438 0.439 0.441 0.442 0.443 0.444
1.6 0.445 0.446 0.447 0.448 0.449 0.451 0.452 0.453 0.454 0.454
1.7 0.455 0.456 0.457 0.458 0.459 0.460 0.461 0.462 0.462 0.463
1.8 0.464 0.465 0.466 0.466 0.467 0.468 0.469 0.469 0.470 0.471
1.9 0.471 0.472 0.473 0.473 0.474 0.474 0.475 0.476 0.476 0.477
2.0 0.477 0.478 0.478 0.479 0.479 0.480 0.480 0.481 0.481 0.482

Table 2: Standard Normal Distribution. This means that values in the table correspond
to probabilities P (0 < Z ≤ z), where Z is a standard normal distributed variable.

9



x
λ 5 6 7 8 9 10 11 12 13 14 15 16
2 0.05 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 0.56 0.38 0.24 0.13 0.07 0.03 0.01 0.00 0.00 0.00 0.00 0.00
10 0.97 0.93 0.87 0.78 0.67 0.54 0.42 0.30 0.21 0.14 0.08 0.05
25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.98

Table 3: Exceedance probabilities for Poison(λ) distribution, i.e., P (X ≥ x) where X ∼
Poison(λ), where λ ∈ {2, 5, 10, 25} and x ∈ {5, 6, . . . , 16}.
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